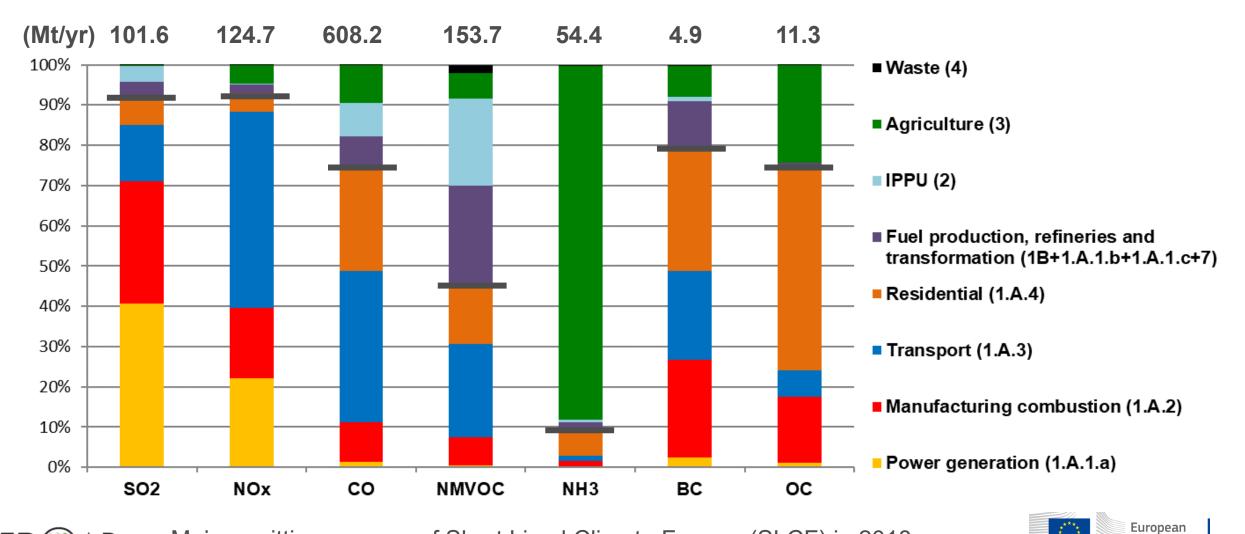


The Emissions Database for Global Atmospheric Research (EDGAR)


Joint 1st and 2nd IPCC Expert Meeting on Short-Lived Climate Forcers

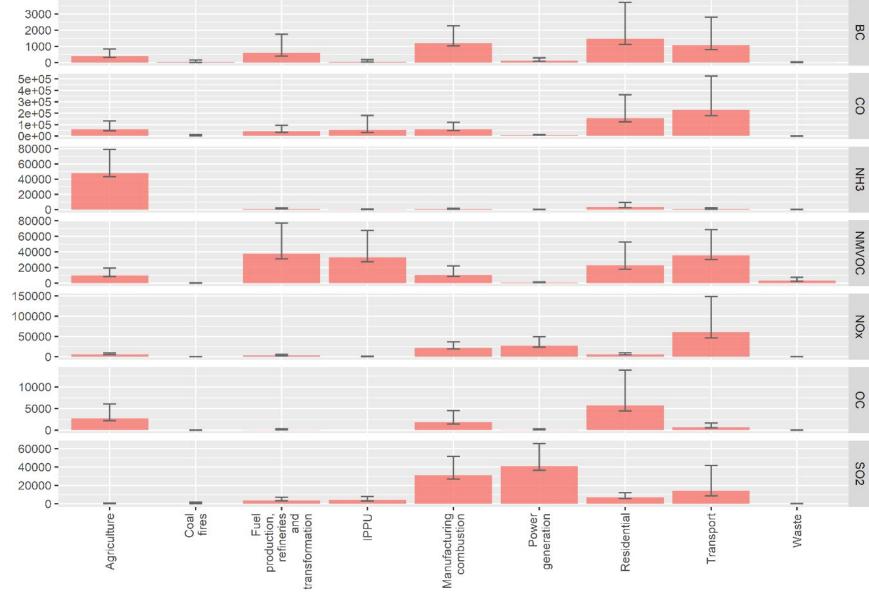
11 – 22 October 2021, Virtual Meeting

Methodologies for Energy, Industrial Processes and Product Use (IPPU), Agriculture, Forestry and Other Land Use (AFOLU) and Waste Sectors.

<u>Monica Crippa</u>, Efisio Solazzo, Diego Guizzardi, Manjola Banja, Marilena Muntean, Edwin Schaaf, Fabio Monforti-Ferrario, Jos Olivier

Global view: main sources of SLCF

Commission



Major emitting sources of Short Lived Climate Forcers (SLCF) in 2018 (EDGAR v6.0)

Uncertainty levels of SLCFs

substance

kton

8 95% CI of a lognormal distribution

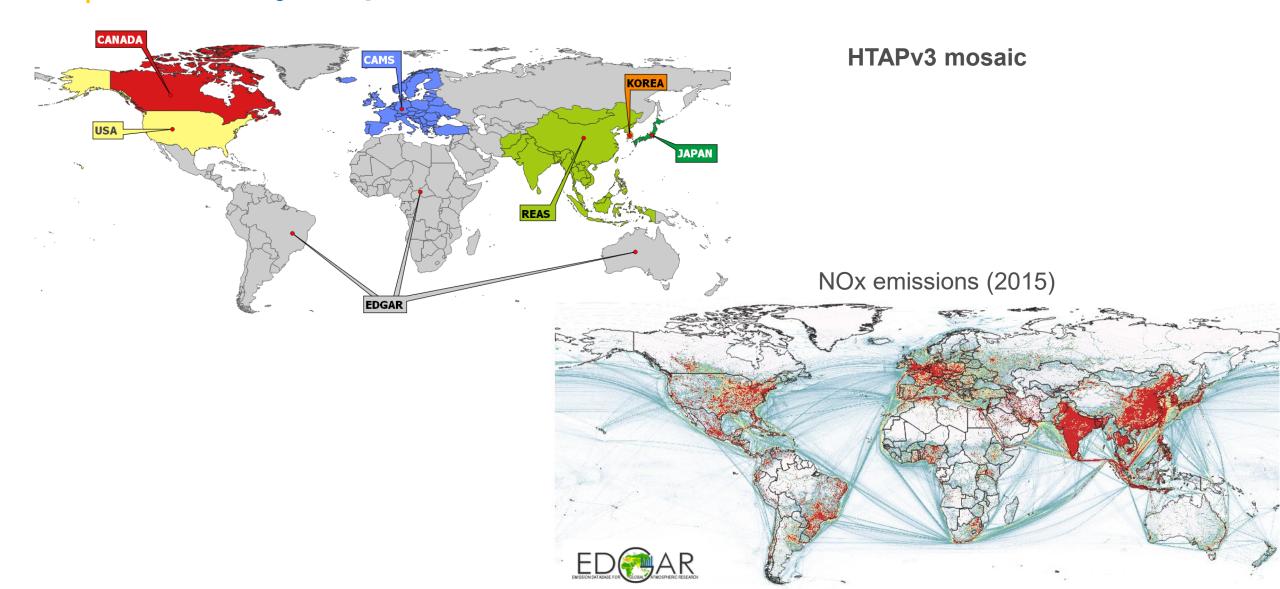
ß		uncert_min	uncert_max
NH3	SO2	8.35%	42.20%
	NOx	12.30%	73.50%
	CO	10.80%	65.60%
NMVOC	NMVOC	7.55%	45.80%
	NH3	8.82%	58.40%
	BC	10.60%	66.80%
NOv	OC	12.50%	82.30%

Methodology from Solazzo et al., 2021: https://doi.org/10.5194/a cp-21-5655-2021

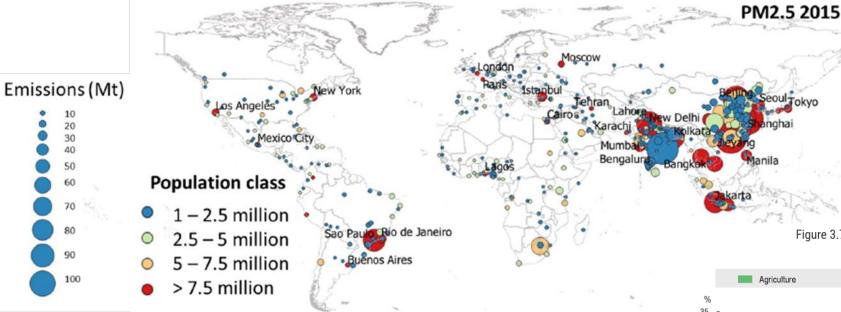
EDGAR Methodology

]
EDGAR overview	Activity data	Emission factors	Methodology	
		EMEP/EEA guidebook		
Power generation (1.A.1.a)	IEA energy balances	2019, AP-42	Tier 2	
		EMEP/EEA guidebook		
Manufacturing combustion (1.A.2)	IEA energy balances	2019	Tier 1	
		EMEP/EEA guidebook		
Transport (1.A.3)	IEA energy balances	2019	Tier 2	
		EMEP/EEA Guidebook		
Residential (1.A.4)	IEA energy balances	2019	Tier 2	
Fuel production, refineries and				
transformation		EMEP/EEA guidebook		
(1B+1.A.1.b+1.A.1.c+7)	IEA energy balances	2019, AP-42	Tier 1	1
	USGS,WSA,Comtrade,	EMEP/EEA Guidebook		
IPPU (2)	FAOSTAT	2019	Tier 1	
		EMEP/EEA Guidebook		
Agriculture (3)	FAOSTAT	2019	Tier 1 and Tier 2	. E
	UN statistics, World Bank,	EMEP/EEA Guidebook		
Waste (4)	FAO	2019	Tier 2	<u>https://</u>

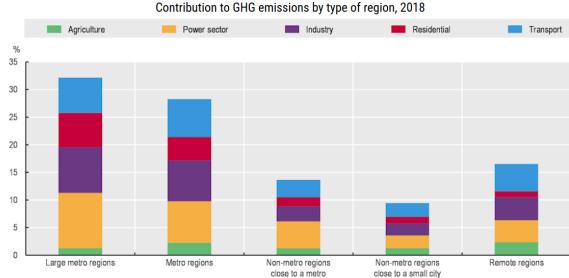
Most critical sectors for data availability: solvents, chemicals, pipelines


Challenges of developing global emissions

- Spatial proxies might be varying for the different SLCFs:
- SOx, NOx Emission Control Areas for shipping
- define substance-dependent weighting factors for certain proxies (based on S content for US power plants)
- Point sources: lack of detailed data for some industrial activities and power plants (consistency)
- Spatial proxy need to be time dependant (lack of data)


 Time resolution: monthly data (seasonality of agriculture, residential, etc.), hourly to model haze events and hot spots (e.g. transport)

Applications (1): Gapfilling the global view of officially reported inventories



Applications (2): global emissions in urban areas

Crippa et al., 2021: https://iopscience.iop.org/article/ 10.1088/1748-9326/ac00e2

Figure 3.7. Metropolitan regions emit the most greenhouse gas emissions

OECD regional outlook, 2021: **3. Reaching net-zero** greenhouse gas emissions: The role for regions and cities

Note: OECD countries, Bulgaria and Romania. GHG emissions excluding emissions from land use and land use change.

Source: OECD calculations based on EC (2020[84]), EDGAR - Emissions Database for Global Atmospheric Research, Joint Research Centre, European Commission.

Challenges and Successes of EDGAR

- Challenges:
- move towards higher Tier methods to identify mitigation actions (lack of data)
- integrate near-real time data (e.g. satellite) to improve the spatial and temporal distribution of SLCFs (power plants, transport)
- Develop methodologies to estimate t-1 emissions (e.g. Fast-Track methods for SLCF, dynamic global inventory)
- Successes:
- global consistency (countries, sectors, pollutants, methods) and historic time series -> trends monitoring and benchmarking
- wide use by modelers
- policy relevance (GHGs, AgrEE tool, HTAP, etc.)

Thanks for your attention!

